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Electrophoresis in an alternating electric field is the basis for electroacoustical 
measurements. These measurements provide new means of investigating the 
electrokinetic properties of colloidal systems. I n  order to relate electroacoustical 
signals to the charge and the size of colloidal particles, an expression is required for 
the dynamic electrophoretic mobility of colloidal particles in a continuous fluid. I n  
this paper, an exact analytical solution to the problem is given for an arbitrary ratio 
between the particle radius and the electric double-layer thickness, in the case where 
the electrokinetic potential of the uniformly charged particle is small and unaffected 
by the alternating field. 

1. Introduction 
Electrophoretic measurements are an important tool for determining the 

electrokinetic 5-potential of colloidal particles. The 5-potential, in turn, is one of the 
parameters determining colloidal stability. Traditionally, electrokinetic potentials 
are determined by measuring the particle’s velocity in a direct electric field applied 
to  the colloidal system, where the continuous phase is usually an electrolyte solution. 

The particle velocity u and the electric field E are proportional to each other : that 
is, 

The constant of proportionality ,uE is called the electrophoretic mobility; it can be 
expressed as (Overbeek 1952) 

u = p E E .  (1.1) 

where e and ,u are the dielectric permittivity and the viscosity of the liquid phase 
respectively, a is the particle radius and l / ~  is the double-layer thickness, which 
depends on the chemistry of the liquid phase. 

In 1903 Smoluchowski showed that f ( ~ a ,  5)  -+: when the electrical double layer is 
thin compared with the size of the particle, the case where KU + 1 (see Overbeek 
1952). As was demonstrated by Henry (1931), Smoluchowski’s solution is 
independent of the shape of the particle. Huckel’s solution, which is valid for 
spherical particles possessing double layers that  are thick compared with the size of 
the particle, corresponds tof+  1 when ~a 4 1 .  Thus changes inf(Ka, 6) are O( t ) ,  end 
cannot be neglected when interpreting experimental results (Overbeek 1952). 

For large 5-potentials, the function f(m, 6) should include the effects of double- 
layer polarization. I n  order to obtain an analytical solution for t h e  electrophoretic 
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mobility in this case, the Navier-Stokes equations must be coupled with the 
Nernst -Planck equations for the convective ionic fluxes (Dukhin & Shilov 1974). 
This poses a complicated mathematical problem. 

The general case has not been solved analytically. Within the framework of the 
Debye-Huckel theory for electrolytes, the problem has been treated numerically by 
Wiersema, Loeb & Overbeek ( 1  966) and later by O’Brien & White (1978). However, 
there are limitations to the validity of the results obtained from the numerical 
solutions. The accuracy of the solutions is doubtful when the surface potential of the 
colloidal particles becomes sufficiently high. This difficulty is not related to the 
numerical procedures that were employed in solving the problem. Rather, i t  appears 
as a result of the fundamental assumptions underlying the Debye-Huckel theory and 
the Poisson-Boltzmann equation that forms part of this theory. The use of the 
Poisson-Boltzmann equation in electrokinetic transport models is based on an ideal 
bulk-solution behaviour of the solute and solvent (Gur, Ravina & Babchin 1978; 
Guzman-Garcia et al. 1990). The equation fails to  take into account finite ion size, 
dependence of the dielectric constant for the continuous phase on the electric field, 
and ion hydration forces; at high surface potentials these effects may have an 
important influence on the polarization of the double layer. 

Recently, electrokinetic models have been proposed to include some of these 
features of the problem (Guzman-Garcia et al. 1990). For example, Gur et al. (1978) 
took into account hydration forces acting on individual ions within the double layer. 
In this case the mathematical description of the polarization effects becomes highly 
nonlinear. This introduces a significant degree of difficulty, and one that remains to 
be overcome, t o  the problem of developing a self-consistent analytical theory for 
double-lager polarization at  arbitrary surface potential. 

The standard method for avoiding polarization effects is to  consider the case of 
small potentials, < < 25 mV. It has been demonstrated by Overbeek (1952) that in 
the case of small and constant surface potential the functionf(Ka, 6) reduces to the 
function f ( K a )  obtained by Henry (1931). The Henry function provides a smooth 
transition from the Huckel to the Smoluchowski solutions. It ranges from f(m) = 1 
when KU 4 1 to ~ ( K u )  = when KU % 1 .  I n  calculating the function f (m) for small 5- 
potentials, Henry (1931) provided the exact analytical solution describing the 
electrophoretic motion of a spherical particle in a direct electric field for arbitrary KU. 

The problem we pose in this paper is the dynamic version of Henry’s problem. We 
want to find, for arbitrary KU, an exact analytical formula for the electrophoretic 
mobility of a spherical particle in an alternating electric field. In  order to avoid 
complications, intrinsic to the double-layer polarization, we retain the assumption 
that the <-potential is small, and therefore that the double layer is radially 
symmetric about the particle. 

The formula for the high-frequency electrophoretic mobility p E ( w )  that  we derive 
here will serve as a theoretical basis for electrokinetic measurements by electro- 
acoustical methods (see O’Rrien 1988; Rabchin, Chow & Sawatzky 1989). 
Electroacoustical instruments for the analysis of colloid systems have only recently 
become commercially available (Matec Applied Sciences). Measurements can be 
made in two modes. When sound waves are applied to a colloid, the oscillatory 
motion of the charged colloidal particles generates an ultrasound vibrational 
potential (UVP), as predicted by Debye (1933). The reciprocal mode is based on 
measurements of the acoustical pressure when sound waves are generated by the 
oscillatory motion of the particles; in this mode, the particle motion is caused by the 
application of a high-frequency electric field to the colloid. The latter mode of 
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measurement was invented by Oja, Peterson & Cannon (1985). Following the name 
given by its inventors, this mode of measurement is called ESA (electrokinetic sonic 
amplitude). 

As demonstrated by O’Brien (1988)) electroacoustical signals for monodispersed 
colloids measured in either mode are proportional to the high-frequency electro- 
phoretic mobility of the colloidal particles. The dependence of the mobility on 
inertia is t h e  principal distinction between high-frequency and static electrophoresis. 
This dependence provides new opportunities for applications of electrophoresis, 
inasmuch as coagulation/coalescence phenomena can be directly monitored, even in 
non-polar and non-transparent media (Rabchin rt ul. 1989; Isaacs rt ul. 1990). The 
applicability of electrowoustid measurements to a broad range of colloidal systems, 
in which the liquid continuous phase can vary from a strong electrolyte to a crude 
oil, makes it important for practical as well as theoretical reasons to develop a 
rigorous derivation of pg(o) for arbitrary KU. 

The aim of this paper is to present an expression for high-frequency mobility that 
is valid for arbitrary KU. The forrnula developed here will be compared with the 
results on high-frequency mobility that have appeared previously in the literature, 
and used to unify these results. 

2. Electric field and hydrodynamic equations 
We formulate the problem as follows. Consider an isolated, rigid, insulating 

spherical particle of radius a ,  with a surface potential [, immersed in a fluid of 
viscosity p and permittivity e. Suppose that an external electric field is present in the 
fluid, alternating at fixed frequency. Far from the particle, the field is uniform. The 
charged particle oscillates in the fluid a t  the frequency of the external field, along a 
straight line that is parallel to the direction of the field far from the particle. The 
calculation of the electrophoretic mobility of the moving charged particle requires 
the solution of equations that describe the distribution of electric potential, as well 
as the velocity and pressure in the surrounding fluid. 

We take the particle as our frame of reference, and use spherical polar coordinates 
r ,  0, q5 whose origin is a t  the centre of the particle. The line of oscillation is the polar 
axis 0 = 0 ;  it coincides with the positive x-axis in Cartesian coordinates. The particle 
velocity u and the external electric field E are proportional to e-lWt, where 0/2n is the 
frequency of oscillation. 

In  the fluid surrounding the sphere, the electric potential $ satisfies Poisson’s 
equation 

where pE is the volume density of charge in the elecatrical double layer around the 
particle. T t  is assumed that the external electric field can be simply superimposed on 
the electric field arising from the double layer. The distortion of the double layer 
induced by the motion of the particle is not taken into account. This is a reasonable 
assumption when, in the absence of the t*xternal electric field, the potential [ at the  
particle surface is sufficiently srnall (Overbeek 1952; Hunter 1981 ; O’Rrien 1988). 
When the charge on the particle is small, changes in charge density due to the 
external field do not significantly affect the field around the particle. Therefore, we 
take for p E  the distribution of charge density that exists when there is no external 
electric field and we decompose the electric potential 1// into the sum of two potentials 
(Henry 1931), 

eV2$ = -pE, (2.1) 

$ = @ E + $ F ;  
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$ E  is the potential produced by the double layer in the absence of the external field 
while t,bP is the potential produced by the external field in the absence of the double 
layer. 

The potential ~E satisfies Poisson’s equation 

&v2$, = - P E -  (2.2) 

P E  = -&K2$E,  (2.3) 

When $ E  is small everywhere in the double layer, it can be shown that (Hunter 1981) 

where (2.4) 

in (2.4) n: is the number density and ez, the charge for the i th species of ion in the 
bulk of the fluid beyond the double layer, N is the number of ionic species in the fluid, 
Ic, is the Boltzmann constant and 7’ is the absolute temperature. The result (2.3) is 
known as the Debye-Hiickel approximation and K is referred to as the Debyt-Huckel 
parameter. 

The substitution of (2.3) into (2.2) yields the following equation for $,: 

V2$, = K ~ $ E .  (2.5) 
It is evident from this equation that the potential $, and the charge density pE 
decay exponentially with distance from the isolated charged particle. The decay 
length 1 / ~  is the double-layer thickness referred to  in 9 1.  Beyond the double layer 
the potential $ E  is zero. 

The boundary conditions associated with (2.5) are 

and 

$,=< a t  r = a  

$ E + O  as r - f c o .  

Equations (2.5)-(2.7) completely determine $ E .  

double layer, this potential satisfies Laplace’# equation 
As $F is the potential produced by the external electric field in the absence of the 

in the fluid surrounding the sphere. Since we are treating the particle as an insulator 
the normal component of electric current a t  the particle surface is zero. In  this case 
the boundary condition for kF a t  the surface of the particle is 

% = o  a t  r = a .  
ar 

Under most circumstances, the need to  take particle conductivity into account is 
doubtful (Overbeek 1952), due to the electrochemical overpotential a t  the particle 
surface. Otherwise, the conductivity of the particle can be included in our results 
with minor modifications to  the analysis (see Henry 1931). Far from the particle the 
external electric field is uniform, so the other boundary condition for @F i s  

(2.10) 

In the vicinity of the particle, the pressure p and the velocity v in the fluid will vary 
on a lengthscale that is of the order of the particle radius. This lengthscale is much 



Electrophoretic motion in an  alternating electric field 325 

smaller than the wavelength of a sound wave in the fluid. For example, a t  a typical 
oscillation frequency of 1 MHz, the length of a sound wave in water is of the order 
of 1 mm. The typical particle radius is of the order of 1 pm. Therefore the fluid can 
be treated as incompressible. Then the equations of fluid motion have the form 

v * v  = 0 (2.11) 

and (2.12) 

where p is the fluid density. The term involving the particle velocity u arises from our 
choice of the sphere as the frame of reference for our coordinate system. The final 
term on the right-hand side of (2.12) represents the electrical body force per unit 
volume. The convective inertia term has been omitted from this equation under the 
following two assumptions: the amplitude of the oscillation of the particle is much 
smaller than the particle radius ; and the Reynolds number based on the particle is 
small (O’Brien 1988). 

At the particle surface, the velocity of the fluid must be the same as the velocity 
of the particle. Far from the particle the fluid is assumed to be a t  rest. In  our 
coordinate system, these boundary conditions are represented as 

v = O  at  r = a  (2.13) 

and v + - u  as Y + C O .  (2.14) 

Equations (2.5)-(2.14) complete the mathematical specification of the problem. 
They describe the distribution of electric potential, and the pressure and velocity in 
a viscous fluid surrounding a moving charged particle. 

3. Solution of the governing equations 

well known. From (2.5)-(2.7) for $ E ,  it follows that 
The solutions for the potentials $E and $F can be given immediately, as they are 

II., = 5(a/r)exp[-K(~--)I. (3.1) 

$F = - E ( ~  + a 3 / 2 r 2 )  cos e. 
The solution to (2.8)-(2.10) for $F is 

(3.2) 

The simplicity of these results demonstrates the convenience of being able to 
decompose the electric potential into the components $ E  and $.p. 

The solution for p and v to  the fluid equations (2.11)-(2.12) and the boundary 
conditions (2.13)-(2.14) is well-known for the case in which there is no body force in 
the momentum equation (2.12). The procedure developed by Landau & Lifshitz 
(1959) to obtain the solution for that  case can be applied equally well in the present 
case in which there is a body force resulting from the charge in the electrical double 
layer. The calculations are straightforward, but somewhat lengthy. Here, we present 
only the principal results. 

The fluid velocity v is obtained by solving the vorticity equation, the curl of (2.12) : 

(3.3) 
a 
at 

p - [ v x ( v + u ) ] - + v 2 ( v x ~ )  = - V x ( p , V $ , ) .  
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With the introduction of the following representation for v (Landau & Lifshitz 1959) : 

u + u = v x (Of x u)  = v x v x fu, (3.4) 

where f is a scalar function of r ,  (3.3) can be reduced to 

where 

and 

(V2 + k2) V2(dj/dr) = GO(r ) ,  

k2 = iiop/,u 

Equation (3.5) differs from the corresponding equation for an uncharged oscillating 
sphere only in the appearance of the forcing term Qo(r) .  From the solution of (3.5) for 
df/dr, the radial, polar and azimuthal components of u can be calculated: 

I)$+ = 0, 

where k = (1 + i)/S, (3.9) 
S = (2p/pw)+, (3.10) 

and (;rY(y) = y eik(r4-a) dr e-2iW3-a) dr 1 r2  eik(T,-a) dr s,̂  Go(rl) dr,. (3.11 ) 

The corresponding pressure distribution is obtained directly by integrating (2.12). 
The result is 

l 4  4 1 '  

(3.12) 
where p o  is the pressure in the fluid far from the particle. 

The terms in (3.8) and (3.12) that appear in addition to those from the 
corresponding solution for the case of an uncharged oscillating sphere reflect the 
influence of the electrical double layer on the motion of the fluid. Without the double 
layer, the velocity and pressure vary over a lengthscale defined by S, the 
characteristic distance over which disturbances generated by the oscillating particle 
decay (TAnndau & Lifshitz 1959). In  the presence of the double layer, variations in 
velocity and preseure occur over another lengthscale as well, the characteristic 
double-layer thickness 1 / ~ .  It is evident from (3.11) that the double layer induces 
variations in the fluid motion over both lengthscales, and that the effects of the two 
scales are coupled. The relative magnitude of the lengthscales depends primarily on 
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the extent of the double layer. For fluids whose viscosity and density are comparable 
with that of water, 8 is of the order of 1 pm a t  a frequency of I MHz. When the 
particle radius is of the order of 1 pm, 1 / K  is two or more orders of magnitude smaller 
than S for thin double layers, of the same order of magnitude as S for intermediate 
double layers, and one or more orders of magnitude greater than 6 for thick double 
layers. Thick double layers generally <)ucur in non-polar media, but they can appear 
in polar media as well. For example, a thick double layer is present around very fine 
particles (with a radius of less than lop2 pm) in distilled water. Although 
electroacoustical methods have been applied more commonly in polar media, they 
also have been used successfully to study the electrokinetic properties of colloidal 
particles in non-polar media (Babchin et al. 1989; Isaacs et al. 1990). 

I n  g5, the impact of the two lengthscales for fluid motion on the high-frequency 
electrophoretic mobility will be discussed. 

4. Force exerted on the particle 
From the solutions to the governing equations obtained in the previous section, 

the total force exerted on the charged spherical particle by the surrounding fluid can 
be calculated. As is the case for an uncharged particle, the force exerted on the 
charged particle is parallel to the particle velocity u.  Therefore the oscillating particle 
experiences a drag force but no lift. 

The total drag force exerted on the particle is obtained from the formula 

Fdrag = J [(T,, cos 8 - crro sin elr=, dS, (4.1) 
S 

where the integration is taken over the whole surface of the sphere. The stress 
components vrr and cr0 can be evaluated a t  the surface of the sphere from the 
solution for the fluid velocity and pressure given in (3.8) and (3.12). The result is 

I 

where (4.3) 

Hence the integral (4.1) becomes 

du 
Fdrag = - [ 67capu( 1 - ika) + $7ca3p - dt + 4napu 1: G,(r) dr - 2na6E slF dr] . 

To the expression (4.4) must be added the force on the particle due to its fixed surface 
charge. This force is parallel to the particle velocity and its magnitude is qE. By 
Gauss' theorem, 

qE = - 47ceEa2 (T) W E  . 
r-a 
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du 
dt 6napu( 1 - ika) + $na3p - + 4napu 1; GI( r )  dr 

The first two terms in (4.5) represent the drag exerted on the particle by the fluid in 
the absence of a double layer. These terms can be written as 

F,, = - [6nap(l  +a/S )u+$7~a~p( l+96 /2a) (du /d t ) ] .  (4.6) 
This is Stokes' formula for the drag on an uncharged oscillating sphere (Landau & 
Lifshitz 1959). 

The remaining terms in (4.5) represent the contribution to the total force on the 
particle by the electrical charge on the particle surface and the corresponding charge 
in the surrounding double layer. With the use of (4.3), (3.7) and ( 2 . 2 ) ,  and integrating 
by parts appropriately, these terms can be expressed as 

Tn the limit as k + O  (i.e. as o+O), we find that 

The formula (4.8) agrees with the formula obtained by Henry (1931) for the 
corresponding steady-state problem. 

When the solution (3.1) for +E is put into (4.7), the definite integrals in the formula 
for F,, can be represented by the exponential integrals En, defined in Abramowitz & 
Stegun (1972). The result is 

(4.11) 

(4.10) I 3 
2k2a2 

+- (e-'"a(E,(Pa) -ikaE,(/3a))- (1 -ika) E , ( K ~ ) )  

and 

In the limit as 1% --f 0, the function fi reduces to 

/3 = K-ik = K +  ( 1  -i)/8. 

fi(h-a, 0 )  = 1 -~Kza2eKa(E , (m) -E , (~a) ) .  (4.12) 

The function f , ( ~ a , O )  is the well-known Henry function (Henry 1931) that we 
denoted byf(Ka) in 5 1.  The formula forf(m) given by Henry contains a small error 
that is corrected in Hunter (1981). The corrected formula and the one presented in 
(4.12) are identical, as can be demonstrated by an appropriate integration by parts. 
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5. Dynamic electrophoretic mobility 

motion for the charged particle : 
The dynamic electrophoretic. mobility pE(o) is determined from the equation of 

$"a3po du/dt = = (l$ +Pel), (5.1) 

(5.2) 

Peff = Po++P(1+98/2a). (5.3) 

where po is the particle density. With the use of (4.6) and (4.9), (5.1) becomes 

@a3peff du/dt = - 67~ap( 1 +a/&) u + 4 ~ ~ 4 f , ( ~ a ,  a/6)  E ,  
where peff, the effective particle density for the oscillatory motion, is given by 

Since the particle oscillates at a fixed frequency, it follows from (5.2) that  the ratio 
u/E is 

T t  is evident from (5.4) that ,uE(o) is complex-valued. It can be expressed in terms of 
its modulus and argument as 

(5.5) / L E ( w )  = IpE(Oj)  I ei5, 

where (5.6) 

and ap = a, +a,, ( 5 . 7 )  

with 

When aF> 0, u lags behind E ; conversely, when ap < 0, E lags behind u. The function 
f l ( ~ a ,  a/&) in the numerator of (5.4) is the dynamic analogue of the Henry function 
f ( ~ a ) .  The remainder of (5.4) is the dynamic analogue of the Hiickel formula for 
electrophoretic mobility ; i t  appears as the result of the time-dependent Stokes drag 
on the particle. 

I n  the limit as w + O ,  the functionf,(Ka, a/6)  reduces to the Henry functionf(m), 
and the denominator of (5.4) reduces to 3,u, so that we recover the sbeady-state result 

(5.9) 
Next, we compare our formula for the dynamic electrophoretic mobility with the 

formulae obtained by Rabchin et al. (1989) and O'Rrien (1988). Tn the notation we 
are using in this paper, thew two formulae can be expressed as 

P E  = ( 2eL/ 3Pu) f (  K a ) .  

and 2 4 [ 3  1 + ( 1 - ia/6)] 
ruE(w)OB = 3p[(l +a/S)  - -$ i (a /~ l )~p~~~/p] '  

(5.10) 

(5.11) 

respectively. The formula (5.11) is obtained by specializing the result given by 
O'Brien to  the case where relaxation effects can be ignored, and is derived under the 
assumption of a thin double layer, where K a  % 1 .  It can be shown that 

f1(m, a /8 )  ++( 1 + (1  -i) a/&) as ~a + co, 
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FIGURE 1 .  The magnitude off,(m,a/S) versus ~a for n/S = 0 ( -), (--), d (....), 2& (--). 

and hence our result (5.4) agrees with O’Brien’s (5.11). However, the result (5.10) 
obtained by Rabchin et aE. (1989) does not agree with (5.11) when K a  B 1,  and we 
conclude that it is not correct for double layers of arbitrary thickness. For thick 
double layers, it  can be shown that 

f i ( K a , a / & ) + l  as K U + O ;  

in this case our result agrees with th.: one of Babchin et al. 
For intermediate values of KCL, the function f I ( ~ a , a / 6 )  may be evaluated 

numerically. I n  figure 1 we have plotted the magnitude offi versus K a  for several 
values of a / & .  It is evident from this graph that the shape of Ifl(~a,a/&)l is very 
similar to that of f ( ~ a ) .  Thus, the function f i ( ~ a ,  a/&) plays the same role in the 
dynamic problem that the Henry function ~ ( K u )  plays in the static problem. It 
supplies a smooth transition from the result for thick double layers through double 
layers of intermediate thickness to the result for thin double layers. 

An important feature of the graph in figure 1 is that it indicates clearly the range 
of KU for which I f J  is very nearly at its asymptotic limit for KU + 00. Over this range 
of ~ a ,  the mobility formula given by O’Brien (1988) agrees with ours. It can be seen 
from figure 1 that as a/6  increases, greater values of are necessary before 
agreement occurs. This observation is consistent with one of the assumptions 
underlying O’Brien’s theory for thin double layers ; namely, that the condition 
KU >> a/S  must be satisfied (O’Brien 1988). 

In experiments for obtaining electrophoretic measurements from electroacoustiral 
instruments, the theoretical ratio of the dynamic and static mobilities can be a useful 
quantity. For example, this ratio has served as a basis for the calibration of dynamic 
electrokinetic measurements (James, Texter & Scales 1991). For the theory proposed 
in this paper, the ratio of the dynamic and static electrophoretic mobilities is, from 
(5.4) and (5.9), 

(5.12) 

The mobility ratio in (5.12) depends on three dimensionless parameters : K U ,  a /S  and 
the density ratio po/p.  In figure 2, the dependence of IpE(w)/pE(0)  I on Ka is illustrated 
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10 100 1000 10000 
K a  

FIGURE 2. The magnitude of the dynapic to static mobility ratio pE(w) / ,uE(0)  versus ~a for 
a / J  =: in; (-), nz (.... ), 5ni(--), with po/p = 1.05. 
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FICXTRE 3. The magnitude of the dynamic to static mobility ratio pE(w) / ,uE(0)  versus a/S for 
hca = 0.1 (-), l .O(--) ,  10.0 (.... ), 100.0 ( - - ) ,  with po/p = 1.05. 

for several values of a/J .  This graph demonstrates that the mobility ratio 
IpE(w) /pE(0)(  reaches its asymptotic limit for Ka+ co a t  smaller values of Ka than 
does I f i l .  Thus there is a range of Ka for which the ratio of the dynamic and static 
mobilities is approximated well by the thin-double-layer theory, but where the 
dynamic mobility itself is not represented accurately by this theory. 

The graph in figure 2 also indicates that the mobility ratio I p E ( ~ ) / p E ( 0 )  1 decreases 
significantly with increasing a/6. This behaviour can be observed in more detail in 
figure 3, where IpE(w)/pE(0) I is plotted as a function of a/6 for several values of ~ a .  
At small values of a/6 the mobility ratio is flat, but as a/& increases, the ratio drops 
sharply towards zero. For example, if a /& = 57d, as it would in a colloidal system 
where the fluid viscosity is 1 cP, the fluid density is 1 g/cm3, the particle radius is 
5 pm and the oscillation frequency is 1 MHz, the ratio IpE(u)/pE(0)I is roughly 0.2 
when the double layer is thin compared with the particle radius. The mobility ratio 
becomes even smaller as the double-layer thickness increases. This means that there 
is an upper limit to the particle size for which electroacoustical methods can be used 
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t 1 

0.01 0.1 1 
a / &  

10 

FIGURE 4. The magnitude of the dynamic to st8atic mobility ratio ,uE(w)/,uE(0) versus (c/6 for 
po/p = 1.05 (-), 1.2 (--),  2.5 (.... ), 4.0 ( - - ) %  with ~n = 60. 

effectively to  obtain electrophoretic measurements. This limit depends on the 
properties of the colloidal system in question, through the values of the dimensionless 
parameters ~ a ,  u,/S and p,,/p. 

The dependence of lpE(w)/,u (0) 1 on freyueiicy can be seen directly from figure 3, 
since a / &  is proportional to ws. For example. a t  a frequency of 1 MHz, if the fluid 
viscosity is 1 cP, the fluid density is 1 g/cm3 and the particle radius is 1 pin, 
a / $  = 7cs and the ratio I,uE(w)/pE(0) I is roughly 0.7. In the vioinit,y of this value of a / 6  
the variation of the mobility ratio with frequency is most pronounced, since the ratio 
drops steeply there. The variation of I j ~ ~ ( w ) / , u ~ ( O )  I with the density ratio pn/p  is also 
greatest over the range of u./S where the mobility ratio drops sharply, as is depicted 
in figure 4. Over this range of a/& the mobilit'y ratio decreases with increasing pJp; 
for smaller a/6  the mobility ratio is independent of po/p. 

Recent>ly, James et al. (1991) published the results of a set of experiments in which 
they examined the application of critical methods of instrument calibration to 
electrokinetic sonic amplitude (ESA) measurements in colloidal dispersions. They 
were concerned with calibrating the ESA measurements by converting the signals to 
dynamic electrophoretic mobilities in terms that, could be related to the static 
mobilities of the dispersions. Since electroacoustical signals are proportional to the 
dynamic mobility of the colloidal particles (O'Brien 1988), this conversion requires 
a theoret)ical basis for the correspondence between static mobilities and dynamic 
mobilities. I n  their paper, James et al. (1991) examined the self-consistency of 
dynamic and stat,ic electrophoretic measurements in several colloidal dispersions for 
the three theoretical descriptions of the electrophoretic mobility ratio that have 
appeared in the literature: ours, as represented here by (5.12); and those of Babchin 
el al. (1989) and O'Brien (1988). 

Four colloidal dispersions were used in the electrophoret,ic and electroacoustical 
measurement8 reported by James et ul. (1991). They consisted of two fairly 
monodisperse latex (PS and PMMA) dispersions, a polydisperse alumina (AKP) 
dispersion and a fairly monodisperse silica (TM) dispersion. All electrophoretic 
measurenients were performed on samples with the continuous phase adjust>ed to 
0 . 0 1 ~  KNO,. A summary of the physical properties of the four dispersions, as 
reflect,ed in t,he dimensionless parameters m, a /$  and pJp, is given in table 1. 

F 



Electrophoretic motion in an alternating electric jield 333 

Dispersion ~a POIP 
PS 99 0.57 1.057 

PMMA 55 0.30 1.195 
AKP 55 0.32 3.99 
TM 3.8 0.02 2.21 

TABLE 1. Physical properties of sample dispersions 

The experimental procedure was designed to judge the consistency of the three 
theoretical treatments of the mobility ratio lpE(u) /pE(0)  I in converting the ESA 
signal to a dynamic mobility. The two latex dispersions and the alumina dispersion 
were used t o  determine a calibration constant for the ESA instrument. For each 
dispersion, the instrument constant’ was calculated from the measured static 
electrophoretic mobility, the measured ESA signal, and the theoretical corre- 
spondence between the static and dynamic mobilities. The results for the theory of 
O’Brien and the theory presented in this paper were identical. Both theories 
predicted the same calibration constants for each of the dispersions. For the two 
monodisperse latex dispersions the calibration constants were nearly equal, while the 
calibration constant for the polydisperse alumina dispersion was roughly 20 % 
smaller, although this discrepancy was not likely caused by the polydispersity of the 
particles (James et al. 1991). All three constants were greater than unity, as discussed 
by James et al. The results for the formula of Babchin et ul. were not consistent with 
the results of the other two theories. This is not surprising, since we see from table 
I that the experimental values of ~a were large, and consequently the Babchin et al. 
results were not correct under these conditions. 

The experimental results reported by James et al. (1991) support the theoretical 
results discussed in our paper. However, their experiments were carried out 
effectively under thin-double-layer conditions, even though they presented experi- 
mental data for a range of materials with considerable differences in particle size 
and density. I n  further experimental tests of the theories for the dynamic 
electrophoretic mobility, a broader range of operating conditions should be sought to 
include colloidal dispersions with thick double layers and dispersions with double 
layers of intermediate thickness. 
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